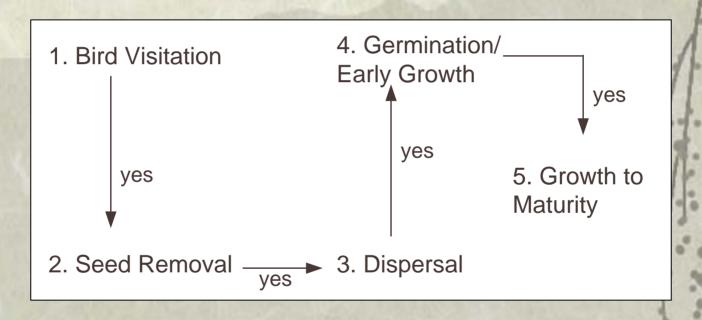
The role of bird dispersal in plant invasion pattern

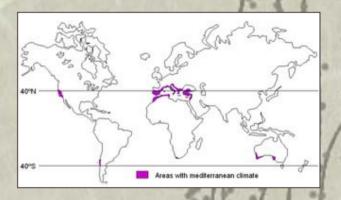

Clare Aslan and Marcel Rejmánek Section of Evolution and Ecology, UC Davis

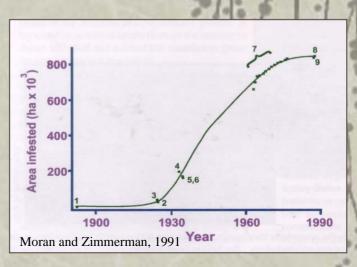
Presentation Outline

- Literature review: known patterns of bird-mediated plant invasion
- * Knowledge gaps and conservation implications
- * Conceptual framework and broad question
- My approach: CA avifauna and woody plant introductions

Conceptual Framework

 Necessary factors: successful bird-dispersed plant invasions




Loose coevolution and generalized dispersal complexes

- Known patterns: successful bird-mediated plant invasion
 - Plant perspective: benefits of bird dispersal
 - Population growth rate (Sekercioglu 2006)
 - Seed size and dispersal (Willson et al. 1990)
 - Germination promotion (Meisenburg and Fox 2002)
 - Vertebrate-dispersed species: 60% (temperate) to 90% (tropical)
 - Bird perspective: fruit attractiveness abundance,
 size, pulpiness, color (Sallabanks 1993)

- * Additional patterns: successful birdmediated plant invasion
 - Influence of frugivore behavior and traits
 - Fragmented landscapes and riparian corridors (Gosper et al. 2005)
 - Invasion of undisturbed habitats: triggering attributes (Gurvitch et al. 2005)

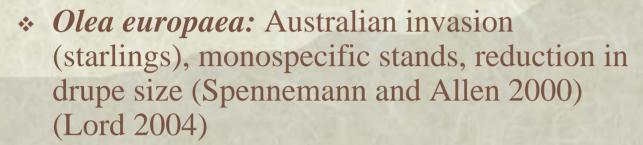
- Relevance to California (Central Valley)
 - Mediterranean climates
 - Conservation implications: reserve design: frugivorous birds and oldfield colonizers (Neilan et al. 2006); corridor attraction of bluebirds (Levey et al. 2005)
 - Lag phases (gap!)

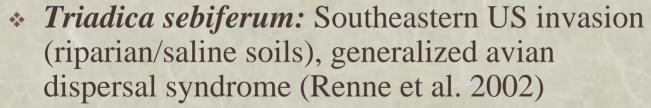
- Conservation implications: potential impacts of bird-mediated invasions (gap!)
 - On native plants
 - Less attractive natives: dispersal-limited? (Knight 1986)
 - Attraction to disturbed or edge habitats: inadequate native dispersal? (Traveset and Richardson 2006)
 - On native birds
 - Plant community structural changes (Traveset and Richardson 2006)
 - Fruiting season, urban areas, and migration (Debussche and Isenmann 1990, 1992)

Risk Assessment: "Red Flag" Nonnatives

- * A few prime suspects:
 - Fleshy-fruited, woody trees/shrubs
 - Widely-introduced
 - Known invasives of similar climates, but...

...Californian establishment/spread nonexistent or rare


E.g.: Olea europaea, Ligustrum lucidum, Schinus terebinthifolius


Noninvasiveness: Temporary or Lasting?

* Overarching research question:

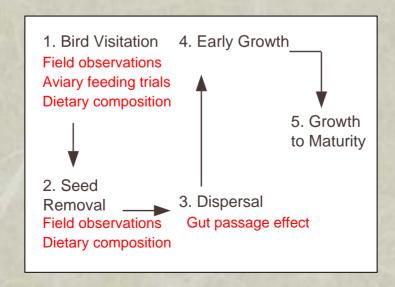
What is the role of bird dispersal in the invasion success of fleshy-fruited, woody plant species introduced to California?

Spectrum Approach: Case Studies

- * Ligustrum lucidum: Invasion in Chile/Australia, urban spread
- * Rubus armeniacus: California invasive

Olea europaea²

Triadica sebiferum³


Ligustrum lucidum

Rubus armeniacus¹

Proposed Studies

- * Field observations: bird use of nonnatives vs. natives
- Aviary feeding preference trials
- * Gut passage effect on germination
- * Year-round dietary composition

Acknowledgements

- * Rejmánek lab group
- * NSF-IGERT
- Montana State University Seed Money Grants
- * Big Chico Creek Ecological Reserve: Jeff Mott, Paul Maslin, Dawn Garcia
- * Cosumnes River Preserve
- * Tom Hahn, Jamie Cornelius, Rodd Kelsey
- Undergraduate research assistants: Elizabeth Alonzo, Emma Armstrong, Stephanie Bouret, Lauren Brizzolara, Michelle Chinoraks, Rachel DeRuvo, Jennifer Piekut